

MEDIUM VOLTAGE CABLES

Engineering Data for Copper and Aluminium Conductors

Cables design	page	2
Introduction Technical standards Key cables code Cables marking		3
Electrical metallic conductors		4
Metal conductor replacement Electrical insulation stress		5
Special performance cables		6
Alternative kind cables		7
Metallic armour cables AWG calculation		8
Quality System Conditions for current ratings Selection cables for alternative current system		9
Range and dimensions3.6/6 kVRange and dimensions6/10 kVRange and dimensions8.7/15 kVRange and dimensions12/20 kVRange and dimensions18/30 kVRange and dimensions26/45 kV	10- 12- 14- 16- 18- 20-	-11 -13 -15 -17 -19 -21
Apparent electric resistance of the conductor Capacity values		22
Phase reactance values		23
Group rating factors	24-	-25
Electrical formulas		26
Final tests		27
Storage and handling		28
Installation	28-	·29
Packaging	29-	·30
Glossary		31

- 1 Copper circular stranded compacted conductor
- 2 Extruded semi-conducting layer
- 3 XLPE insulation
- 4 Extruded semi-conducting layer
- 5 Copper tapes screen
- 6 Not hygroscopic filler
- 7 PVC oversheath
- 8 Marking

- 1 Copper or aluminium circular stranded conductor
- 2 Extruded semi-conducting layer
- 3 XLPE insulation
- 4 Extruded semi-conducting layer
- 5 Copper tapes screen
- 6 Not hygroscopic filler
- 7 Galvanized steel flat wire armour
- 8 PVC oversheath
- 9 Marking

This booklet is designed to help engineers in the selection of conductors sizes and in the installation of cables system.

The information provide general cross sectional area, outside diameter, weight, bending radius and handling cables. Besides you can select the ampacity of a cable and the various factors given for any installation condition varying from those for which the tables where calculated.

Basic data has been calculated in compliance of the conditions as page 9.

Furthermore detailed information may be requested directly to our customer's assistance service office. Please to take into consideration many alternative kind cables with special performances as described on **pages 4**, 5, **6**, **7** and **8**.

We are available to produce cables with AWG conductors size, as shown on **page 8**, to employ by end-user operating out from metric-system area.

TECHNICAL STANDARDS

- IEC 60502-2 Power cables with extruded insulation up to 30 kV (Um 36 kV) Uo/U (Um) 3.6/6(7.2) kV 6/10(12) kV 8.7/15(17.5) kV 126/20(24) kV 18/30(36) kV
- IEC 60840 Power cables with extruded insulation for rated voltages above 30 kV (Um 36 kV) up to 150 kV (Um 170 kV) Uo/U (Um) 26/45(52) kV
- **IEC 60228** Conductor of insulated cables
- IEC 60332-1 Test for vertical flame propagation for single insulated wire or cable
- EN 50265 Test for vertical flame propagation for a single insulated wire or cable
- IEC 60287 Calculation of the current rating

CEI 11-17 Generation, trasmission and distribution system of electric power - (domestic standard) Cables installation

KEY CABLES CODE

A R	Aluminium conductor Conductor class 2 (without any lettere	0	Mean three phases under the same outersheath
	before R mean copper conductor)	Α	Steel braid armour
E4 G7	XLPE polyetylene insulation HEPR high ethylene propylene rubber	AH6	Corrugated aluminium tape electrowelded
	insulation	H6	Corrugated steel tape electrowelded
H1	Tapes or wires copper screen	H9	Corrugated steel tape thermosealed
H5	Longitudinally thermosealed aluminium	Z	Flat steel wires armour
	tape	Ν	Steel tapes armour
R	PVC - polyvinyl chloride sheath	NA	Aluminium tapes armour
E	Polyetylene sheath	F(SWA)	Steel wires armour
M1	LSOH - low smoke zero halogen	FÀ(AWÁ)	Aluminium wires armour
	compound	X` ′	Mean three single sheathed cables assembled together

CABLES MARKING

In order to provide the cable type identification , cable-maker and generally its traceability in compliance of **Quality Guarantee** rules, any cables has an entire code continually printed or engraved or embossed on the outer-sheath.

ELECTRICAL METALLIC CONDUCTORS

Copper and aluminum are the most employed metals for conductors in the cables power production tecnology. Their application is due to different parameters as electric conductivity, density (mass per unit volium), breaking load and elongation, malleability, thermal conductivity, elastic module and finally metal cost-effective. The shape of conductors and their rigidity or flexibility is designed in consideration of the final application and of the rated voltage cable.

For medium tension cable is very important a smouth outside surface metal conductor to reduce electrical insulation stress. For the pourpose any MT conductor is compacted by special tools suitable to calibrate outside diameter and surface. In all tables we report the nominal cables section expressed in mm2 but the real conductor size considered is difined **Electrical Section** that is guaranteed by means of check of the maximum appropriate electrical resistance at 20°C in compliance of technical standards.

1- class 2 round stranded not compacted

- 2- class 2 round stranded compacted
- 3- class 5 uniform bunched wires
- 4- class 2 round compacted water blocking
- 5- class 1 round solid
- 6- class 1 shaped solid
- 7- class 1 shaped stranded

METAL CHARACTERISTICS

When is necessary to improve a few basic metal characteristics is possible to lose or reduce significant other properties. However typical metal characteristics ordinary way contemplated, over any global evaluation, are indicated in the table below.

Copper results to hold the greatest electrical conductivity but despite that its price may be still high if compared with aluminium for example. Following information help you a fully technical evaluation.

CHARACTERISTICS	UNITS	ANNEALED COPPER	HARD COPPER	ALUMINIUM (3/4 HARD)	ALUMINIUM ALLOY	LEAD	STEEL
code		Cu-ETP		AI 99.5			
chemical symbol		Cu	Cu	AI	-	Pb	Fe
density	Kg/dm₃	8.89	8.89	2,7	2.7	11.35	7.8
resistivity at 20°C	Ohm.km/mm ²	17.241	17.586	28.264	32.50	206	190
electric conductivity	% IACS*	100	98	61	53	8.4	9
thermal conducivity	W/cm.k	3.893	3.893	2.218	1.84	0,35	0.46
breaking load	daN/mm ²	20-30	35-50	12-15	35-40	1.75	40-150
breaking elongation	%	25-30	0.5-3	1.5-3	4-6	20-50	2-6
elastic module	daN/mm ²	10500	12000	5600	6000	1700	18500
melting temp.	°C	1083	1083	657	657	327	1400
specific heat	Cal/°C.g	0.093	0.093	0.214	0.214	0.030	0.114
temp. variation coef.	k-1	0.00393	0.00393	0.00403	0.0036	0.0042	0.004
linear dielectric coef.	k-1 (x 10-6)	17	17	23	23	29	11.5

* International Annealed Copper standard

METAL CONDUCTOR REPLACEMENT

Strictly connected to metal market price an important save money may be achieved by to use aluminium cables instead of copper cables. In this case a calculation of aluminium conductor size, bigger than copper, is possibile by electrical equivalence formula:

Cu resistivity	0.017241 Ohm • mm ² /m at 20° C	- 0.61
Al resistivity	0.028264 Ohm • mm ² /m at 20° C	- 0.01

Due to the above equivalence how to change an aluminuim cable in a copper cable and contrariwise:

<u>example</u>

Al cable size 240 mm² • 0.61 = 146.40 mm² Cu (mathematical size) consequently the nearest available standard size to use is **150 mm² Cu**

Cu cable size 240 mm² : 0.61 = 393.44 mm² AI (mathematical size) consequently the nearest available standard size to use is **400 mm² AI**

ELECTRICAL INSULATION STRESS

The XLPE insulation is extruded simultaneously with the conductor screen and the insulation screen.

The surfaces between inner semicondutor layer and XLPE insulation and between insulation and outside semiconductor layer are not exposed to environment conditions. Triple and dry curing extrusion guarantee high products quality. Is known that the electrical stress is maximum at the conductor level surface and decrease drawing up outside insulation layer.

In order to avoid stress peak in the medium voltage cable compacted metallic conductors with homogeneous and smooth surface are employed. Besides that the extruded conductor screen allows an uniform electric field which contributes for a long duration cable life.

The insulation thickness may be calculated by following formula.

 $Ex = \frac{Uo}{x \ln (R/r)} kV/mm$

R radius under insulation screen

r radius over conductor screen

Uo voltage across insulation

INSULATION STRESS VALUE example 18/36 kV

SPECIAL PERFORMANCE CABLES

FLAME RETARDANT - LOW SMOKE - ZERO HALOGENS (LS0H)

Fire is one of the most danger for popolations and equipments especially inside structures and in any place where it may happen. Very frequently that is due to the very extensive use of cables. They can be an important components to trigger fire, carry flames everywhere, developping acid gasses and dark fumes very hazardous for persons.

In consideration of past tragic happenings have been developped special cables with particolar performances reaction to fire as to design cables with components able to avoid issue aggressive substances underburnings event without loosing or altering any basic feature.

Flame Retardancy - cables in compliance of standards country regualtions suitable to overcome special resctrict propagation test on single cable or bunched cables with definite volium per meter of non metallic material. Its behaviour is strictly related to the combustion quantity material exposed to the flame, temperature and aeration.

Corrosivity Combustion Gasses - not LS0H during combustion develop great quantities of corrosive and toxic gasses. New generation cables reduce or entirely remove it.

Intensity and Dark Smoke - under fire conditions not LSOH cables release dark smokes that prevent people evacuation, that has been restricted ta lot, as a special test able to verify residue light across the smokes shows.

EN 50265 IEC 60332-1	Test for resistance to vertical flame propagation for a single insule $(z; z)$ (uctor or cable
EN 50266 IEC 60332-3	Test for vertical flame spre tically-mounted bunched wires constants
EN 50267 IEC 60754	Test on gases evolved dur justion of materials from cables
EN 61034 IEC 61034	Measurement of smoke density of cable ning under defined conquises

EN 50265 IEC 60332-1

EN 50266 IEC 60332-3

EN 50267 IEC 60754

EN 61034 IEC 61034

ALTERNATIVE KIND CABLES

Alternative kinds of cable are possible to be engineered in order to ensure a long term service with large tolerability for specific working conditions as dry and wet ground, rain and snow, under-water without any cover, direct exposition to the sun, places where cables can be crashed into etc.

Electromagnetic Fields (EMF) are one of the most technical matters that affect environment condition that may be supervised by an appropriate increase of the cable metallic screen.

1- Particularly eligible for installations in contact with water and moisture contact thanks to longitudinally thermosealed aluminium tape screen absoluty safety of transverse tightness.

2- In any habitat place where a limited a EMF level is required we provide through the electrical balance of conductor and cable screen.

3- Root Cable is a commercial brand cable in aluminium or copper conductor with a non metallic mechanical protection made-up of an under outersheath plastic layer able to cushion heavy blow and to safeguard the below metallic cable screen.

4- Self supporting cables for overhead installations through aluminium steel cladding rope laid in the central of three single phases. That rope can be replaced with a non metallic rope. This involves a new cable design with an increase screen size to allow electrical current fault discharge.

5- Three-phases underground cable with additional cables service.

6- Composite MT and FO cable where three-phases power elements and telecomunication aggregate fiber optic cable able to work under the same outersheath.

METALLIC ARMOUR CABLES

A few different types of armour can be designed as protection of cables against crahs ,blow, shock, cuts, abrasions etc. Furthermore in order to avoid electrical induction in the single phase cables the armour must be made-up of non-magnetic metals as copper, aluminium, bronze etc..

Steel braid armour - a few group of wires braided together in opposite way.

Wires armour - a layer of round wires.

Tapes armour - double tapes wrapped in the same direction in open helics, the second one to cover underlyings space. **Corrugated armour** - a single longitudinally smooth tape corrugated by a special tool.

Flat wires armour - a layer of wrapped flat wires with a contrary tape wrapped in open helics.

A steel braid armour
F (SWA) a layer of wrapped steel round wires FA (AWA) a layer of wrapped aluminium round wires
 N double steel tapes wrapped in open helics, the second one to cover underlyings space NA double aluminium tapes wrapped in open helics, the second one to cover underlyings space
 AH6 H6 H9 Iongitudinally overlapping corrugate aluminium tape Iongitudinally overlapping corrugate steel tape electrowelded Iongitudinally overlapping corrugate steel tape thermosealed
Z a layer of wrapped steel flat wires with a contrary steel tape wrapped in open helics

AWG CALCULATION

For any operator in a market where there is in force AWG system the following table can be used to turn mm2 to AWG or CM and contrariwise. Please keep in consideration some ineluctable approximate calculation due to standard metric system size.

Approximate parallel square-mm to AWG					AWG reference	C	Conversion	n AWG to	square-mm	1
Stand. size mm²	Elec. resist. Ohm/km 20°C Cu	Elec. resist. Ohm/km 20°C Al	CM (circ.mil)	approx. diam. mil *		approx. diam. mil *	CM (circ.mil)	Elec. resist. Ohm/km 20°C Cu	Elec. resist. Ohm/km 20°C Al	Stand. size mm²
10	1.83	3.08	19735	162.3	8 AWG	148.4	16510	3.68	2.19	8.366
16	1.15	1.91	31576	205.2	6 AWG	187.1	26251	2.29	1.38	13.302
25	0.727	1.20	49338	256.6	4 AWG	236.0	41741	1.418	0.859	21.151
35	0.524	0.868	69073	303.6	2 AWG	297.6	66371	0.903	0.545	33.631
50	0.387	0.641	98676	362.8	1 AWG	334.1	83693	0.756	0.456	42.408
70	0.268	0.443	138147	429.3	3/0 AWG	473.1	167806	0.365	0.220	85.029
95	0.193	0.320	187485	500.1	4/0 AWG	531.3	211600	0.283	0.171	107.219
120	0.153	0.253	236823	562.1	5/0 AWG	596.6	266823	0.224	0.136	135.219
150	0.124	0.206	296029	628.4	6/0 AWG	670.0	336457	0.181	0.109	170.485
185	0.0991	0.164	365102	697.9	7/0 AWG	752.3	424265	0.141	0.0852	214.978
240	0.0754	0.125	473646	794.9	8/0 AWG	844.8	534988	0.111	0.0667	271.082
300	0.0601	0.100	592058	888.7	9/0 AWG	948.7	674607	0.0877	0.0527	341.829
400	0.0470	0.0778	789410	1026.2	10/0 AWG	1065.3	850664	0.0721	0.0436	431.038
500	0.0366	0.0605	986763	1147.3	11/0 AWG	1196.2	1072668	0.0556	0.0336	543.529
630	0.0283	0.0469	1243321	1287.9	12/0 AWG	1343.3	1352609	0.0431	0.0260	685.377
800	0.0221	0.0367	1578820	1451.3	13/0 AWG	1508.4	1705608	0.0339	0.0205	864.244
1000	0.0176	0.0291	1973525	1622.6	14/0 AWG	1693.9	2150732	0.0267	0.0161	1089.792
1200	0.0151	0.0247	2368230	1777.4	15/0 AWG	1902.1	2712023	0.0216	0.0132	1374.202
1400	0.0129	0.0212	2762935	1919.9	15/0 AWG	1902.1	2712023	0.0216	0.0132	1374.202
1600	0.0113	0.0186	3157640	2052.4	16/0 AWG	2135.9	3419798	0.0171	0.0104	1732.837
1800	0.0101	0.0165	3552345	2176.9	16/0 AWG	2135.9	3419798	0.0171	0.0104	1732.837
2000	0.0090	0.0149	3947050	2294.7	17/0 AWG	2398.5	4312286	0.0136	0.0082	2185.068

*stranded conductor

QUALITY SYSTEM

Our Quality System management includes two certificates: Basec (UK) and Aenor (E), in accordance to ISO

9001 covering the production, purchasing of raw materials, design and final test including various document typologies.

Tratos Quality System management is under constant control by auditing inspectors.

CONDITIONS FOR CURRENT RATINGS

Current ratings values stated in the following schedules have been calculated in compliance with IEC 60287 standard.

Current ratings values refer to the following conditions:

Conductor maximum temperature	90° C
Ambient temperature for installation in open air	30° C
Ambient temperature for underground installation	20° C

Laying dephts

for voltages	U = 3.0÷10kV
for voltages	U = 15÷30kV
for voltages	U = 45kV
	for voltages for voltages for voltages

Thermal resistivity (Rt)

ground	100 and 200° C \cdot cm/W
HEPR insulation	450° C · cm/W
PVC oversheath	500° C · cm/W

The metallic screen (6 mm² standard size), jointed together, are connected to earth.

SELECTION OF CABLES FOR ALTERNATIVE CURRENT SYSTEM

Th	ree-phases	s system o	Insulation ra	ating cables	
nominal tension U (kV)	maximum tension Um (kV)	class	maximum time for each test with grounded phase*	with screen on the single core Uo (kV)	without screen on the single-core Uo/U kV
3	3.6	В	over 8 h	1.8	1.8/3
6	7.2	A B	up to 8 h over 8 h	3.6 6	3.6/6 _
10	12	A B	up to 8 h over 8 h	6 8.7	
15	17.5	A B	up to 8 h over 8 h	8.7 12	
20	24	A B	up to 8 h over 8 h	12 15	_ _
30	36	A B	up to 8 h over 8 h	18 26	
45	52	A B	up to 8 h over 8 h	26 30	_ _

Uo = relates to the nominal tension between a conductor and earth

U = relates to the nominal tension between the conductors of the cable

Um = maximum tension for which the cable is suitable

* The whole annual period must be established in consideration of the environmental conditions

SINGLE-CORE RE4H1R-3.6/6 kV - ARE4H1R-3.6/6 kV

nominal area conductor	conductor diameter d	insulation thickness	nominal overall diameter D	maximum overall diameter	appro: cable kg/	ximate weight /km	minimum bending radius
mm ²	mm.	mm.	mm.	mm.	Cu	AI	mm.
1x 10 1x 16 1x 25 1x 35 1x 50 1x 70 1x 95 1x120 1x150	3.8 4.7 5.9 7.0 8.2 9.9 11.5 12.9 14.2	2.3 2.3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	12.2 14.0 15.6 21.0 22.2 23.9 25.5 27.0 28.5	14.0 15.0 17.0 22.0 22.2 24.9 26.5 28.0 29.5	310 373 463 744 909 1133 1397 1664 1980	248 274 308 527 594 692 799 909 1035	196 210 238 310 320 350 370 390 410
1x185	16.2	2.5	30.5	31.5	2347	1182	440
1x300 1x400 1x500 1x630	21.2 23.4 27.3 30.5	2.0 2.8 3.0 3.2 3.2	33.0 36.6 39.3 44.0 47.4	37.6 40.3 45.0 48.4	3599 4602 5694 6995	1710 2083 2545 3028	530 560 630 670

THREE-CORES RE4H10R-3.6/6 kV - ARE4H10R-3.6/6 kV

nominal area conductor	conductor diameter d	insulation thickness	nominal overall diameter D	maximum overall diameter	approx cable kg/	kimate weight km	minimum bending radius
mm ²	mm.	mm.	mm.	mm.	Cu	AI	mm.
3x 10 3x 16 3x 25	3.8 4.7 5.9	2.3 2.3 2.3	24.2 24.7 29.8	24.7 26.2 31.3	966 1251 1640	780 954 1175 2075	346 367 438
3x 35 3x 50 3x 70 3x 95	7.0 8.2 9.9 11.5	2.5 2.5 2.5 2.5	41.0 43.8 47.7 51.3	42.5 45.3 49.2 52.8	2726 3337 4181 5147	2393 2859 3352	590 630 690 740
3x120 3x150 3x185 3x240	12.9 14.2 16.2 18.2	2.5 2.5 2.5 2.6	54.5 57.4 62.2 67.4	56.0 58.9 63.7 68.9	6100 7174 8562 10571	3832 4340 5067 6037	780 820 890 960

ARMOURED THREE-CORES RE4H10ZR-3.6/6 kV - ARE4H10ZR-3.6/6 kV

nominal area conductor	conductor diameter d	insulation thickness	nominal overall diameter	maximum overall diameter	approx cable v kg/	kimate weight km	minimum bending radius
mm²	mm.	mm.	mm.	mm.	Cu	AI	mm.
3x 10	3.8	2.3	29.2	30.7	1568	1382	430
3x 16	4.7	2.3	31.4	33.9	1880	1415	461
3x 25	5.9	2.3	32.5	34.0	2184	1719	476
3x 35	7.0	2.5	46.1	47.6	3865	3214	670
3x 50	8.2	2.5	48.9	50.4	4335	3590	706
3x 70	9.9	2.5	53.0	54.5	5536	4214	760
3x 95	11.5	2.5	56.6	58.1	6600	4805	810
3x120	12.9	2.5	59.8	61.3	7646	5379	860
3x150	14.2	2.5	62.7	64.2	8773	5939	900
3x185	16.2	2.5	67.5	69.0	10312	6817	970
3x240	18.2	2.6	72.7	74.2	12437	7903	1040

nominal area conductor	or air laying											
		R _t =100 °	°C cm/W			R _t =200 °	°C cm/W					
mm ²	Cu 😱	• Al	Cu 🖕	AI	Cu 😱	, Al	Cu	AI	Cu 🔒	• Al	Cu	Al
1x 10	119	97	114	92	95	79	89	73	127	102	106	85
1x 16	140	112	135	108	110	92	105	86	150	120	125	101
1x 25	166	133	158	127	128	106	122	100	177	142	147	118
1x 35	195	150	185	146	151	123	141	113	208	152	173	138
1x 50	232	182	220	172	175	139	166	130	240	190	199	151
1x 70	286	221	268	209	216	167	203	156	300	240	242	194
1x 95	341	256	322	250	257	201	242	188	380	290	314	231
1x120	388	302	368	285	289	230	272	214	430	334	360	270
1x150	430	339	411	327	325	255	306	245	498	398	415	327
1x185	487	385	467	364	365	289	341	270	585	450	495	368
1x240	565	442	540	416	421	327	400	307	683	525	579	469
1x300	640	508	610	477	473	376	450	352	790	630	672	527
1x400	726	580	692	548	535	426	511	402	905	730	770	613
1x500	815	652	764	617	597	478	569	450	1019	857	817	725
1x630	913	745	873	711	667	551	640	522	1200	1000	1020	847

CONTINUOUS CURRENT RATINGS (ampere)

CONTINUOUS CURRENT RATINGS (ampere)

nominal area conductor		ground	air laving				
	R _t =100 °	°C cm/W	R _t =200 °	°C cm/W			
mm ²	Cu	AI	Cu	AI	Cu	AI	
3x 10	115	94	78	64	93	81	
3x 16	135	111	94	77	117	98	
3x 25	159	130	115	94	146	120	
3x 35	187	150	140	115	182	146	
3x 50	221	172	170	133	219	174	
3x 70	273	210	212	162	275	213	
3x 95	322	250	249	193	335	259	
3x120	363	285	280	220	362	298	
3x150	405	320	313	248	430	330	
3x185	469	359	363	275	495	380	
3x240	520	415	399	329	583	450	

CONTINUOUS CURRENT RATINGS (ampere)

nominal area conductor		ground	air laving				
	R _t =100 °	°C cm/W	R _t =200 °	°C cm/W	an laying		
mm ²	Cu	AI	Cu	AI	Cu	AI	
3x 10	112	91	76	62	90	78	
3x 16	130	107	91	75	113	95	
3x 25	154	126	111	91	142	116	
3x 35	180	150	149	112	176	145	
3x 50	220	163	182	131	212	170	
3x 70	259	208	209	169	260	210	
3x 95	307	239	247	193	320	243	
3x120	350	268	280	212	360	298	
3x150	405	310	327	249	430	330	
3x185	450	348	362	282	490	380	
3x240	528	400	428	322	560	437	

SINGLE-CORE RE4H1R-6/10 kV - ARE4H1R-6/10 kV

nominal area conductor	conductor diameter d	insulation thickness	nominal overall diameter D	maximum overall diameter	approx cable kg/	kimate weight /km	minimum bending radius
mm²	mm.	mm.	mm.	mm.	Cu	AI	mm.
1x 10 1x 16 1x 25 1x 35 1x 50	3.8 4.7 5.9 7.0 8.2	3.4 3.4 3.4 3.4 3.4 3.4	17.7 19.5 21.0 22.8 24.0	18.7 20.6 22.2 23.8 25.0	403 581 664 819 993	341 482 509 602 678	262 289 315 330 350
1x 70 1x 95 1x120 1x150 1x185	9.9 11.5 12.9 14.2 16.2	3.4 3.4 3.4 3.4 3.4 3.4	25.7 27.3 29.0 30.3 32.5	26.7 28.3 30.0 31.3 33.5	1237 1506 1798 2113 2508	796 908 1043 1168 1343	370 390 420 440 470
1x240 1x300 1x400 1x500 1x630	18.2 21.2 23.4 27.3 30.5	3.4 3.4 3.4 3.4 3.4 3.4	34.7 37.9 40.3 44.4 47.8	35.7 38.9 41.3 45.4 48.8	3088 3802 4806 5871 7187	1577 1913 2286 2722 3220	500 540 580 630 680

THREE-CORES RE4H10R-6/10 kV - ARE4H10R-6/10 kV

nominal area conductor	conductor diameter d	insulation thickness	nominal overall diameter D	maximum overall diameter	appro: cable kg/	kimate weight km	minimum bending radius
mm²	mm.	mm.	mm.	mm.	Cu	AI	mm.
3x 10	3.8	3.4	34.7	35.7	1088	902	500
3x 16	4.7	3.4	37.2	38.2	1981	1683	535
3x 25	5.9	3.4	37.7	38.7	2058	1893	542
3x 35	7.0	3.4	45.2	46.2	3106	2456	640
3x 50	8.2	3.4	47.9	48.9	3739	2795	680
3x 70	9.9	3.4	51.8	52.8	4614	3292	740
3x 95	11.5	3.4	55.5	56.5	5611	3817	790
3x120	12.9	3.4	58.9	59.9	6620	4353	840
3x150	14.2	3.4	61.9	62.9	7722	4887	880
3x185	16.2	3.4	66.4	67.4	9115	5620	940
3x240	18.2	3.4	71.1	72.1	11108	6574	1010

ARMOURED THREE-CORES RE4H10ZR-6/10 kV - ARE4H10ZR-6/10 kV

nominal area conductor	conductor diameter d	insulation thickness	nominal overall diameter D	maximum overall diameter	approx cable kg/	kimate weight km	minimum bending radius
mm²	mm.	mm.	mm.	mm.	Cu	Al	mm.
3x 10	3.8	3.4	38.0	39.1	1580	1394	547
3x 16	4.7	3.4	39.8	40.9	2876	2578	573
3x 25	5.9	3.4	45.2	46.3	3529	3064	648
3x 35	7.0	3.4	50.4	51.4	4358	3707	720
3x 50	8.2	3.4	53.1	54.1	5079	4135	760
3x 70	9.9	3.4	57.0	58.0	6055	4732	810
3x 95	11.5	3.4	60.7	61.7	7151	5356	860
3x120	12.9	3.4	63.9	64.9	8222	5955	910
3x150	14.2	3.4	66.9	67.9	9416	6582	950
3x185	16.2	3.4	71.6	72.6	10979	7484	1020
3x240	18.2	3.4	76.1	77.1	13042	8508	1080

nominal area conductor	ground laying air laying air laying								avina			
	R _t =100 °C cm/W R _t =200 °C cm/W											
mm ²	Cu 😱	, Al	Cu 🖕	AI	Cu 😱	, Al	Cu	AI	Cu 😱	• Al	Cu	Al
1x 10 1x 16 1x 25 1x 35 1x 50	111 134 161 194 233	85 103 124 151 179	125 140 151 182 219 268	96 108 110 140 168 213	82 100 122 149 181	65 78 94 113 137	85 102 123 141 169 203	65 79 95 108 127	128 151 178 209 241	102 121 142 152 193	124 145 175 195 204	105 116 140 156 163
1x 70 1x 95 1x120 1x150 1x185	283 340 384 431 486	265 302 340 382	318 366 409 462	213 249 284 318 358	256 292 325 365	201 229 256 287	203 245 275 307 344	186 212 240 267	370 444 493 580	302 340 395	283 311 380 420	203 256 288 337
1x240 1x300 1x400 1x500 1x630	564 631 720 809 905	443 503 575 653 739	540 604 690 780 879	430 479 545 631 719	423 474 635 605 674	328 380 434 493 554	398 449 509 572 648	309 356 406 461 527	686 795 925 1001 1208	465 550 620 720 820 970	497 594 688 804 864 1065	412 475 528 616 700 954

CONTINUOUS CURRENT RATINGS (ampere)

CONTINUOUS CURRENT RATINGS (ampere)

nominal area conductor		ground	air laving				
	R _t =100 °	°C cm/W	R _t =200	°C cm/W			
mm ²	Cu	AI	Cu	AI	Cu	AI	
3x 10	100	81	80	64	106	85	
3x 16	122	100	97	78	126	101	
3x 25	148	120	117	94	152	122	
3x 35	181	151	143	114	185	146	
3x 50	219	170	174	132	224	172	
3x 70	270	213	212	167	279	214	
3x 95	325	249	255	195	337	250	
3x120	364	283	284	218	373	287	
3x150	413	318	318	246	430	334	
3x185	455	350	356	270	499	380	
3x240	530	418	411	326	583	453	

CONTINUOUS CURRENT RATINGS (ampere)

nominal area conductor		ground	air laving				
	R _t =100 °	°C cm/W	R _t =200	°C cm/W			
mm ²	Cu	AI	Cu	AI	Cu	AI	
3x 10	97	79	77	62	103	83	
3x 16	118	97	94	76	122	99	
3x 25	143	116	113	91	147	119	
3x 35	183	150	150	114	179	146	
3x 50	215	171	174	128	220	168	
3x 70	250	200	199	156	275	210	
3x 95	273	243	258	193	315	245	
3x120	352	281	281	211	373	278	
3x150	402	272	318	209	419	329	
3x185	450	345	457	262	484	380	
3x240	519	410	410	316	550	450	

SINGLE-CORE RE4H1R-8.7/15 kV - ARE4H1R-8.7/15 kV

nominal area conductor	conductor diameter d	insulation thickness	nominal overall diameter D	maximum overall diameter	approx cable kg/	ximate weight ⁄km	minimum bending radius
mm²	mm.	mm.	mm.	mm.	Cu	AI	mm.
1x 16 1x 25 1x 35 1x 50 1x 70 1x 95 1x120	8.7 5.9 7.0 8.2 9.9 11.5 12.9	4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	21.0 23.0 25.0 26.5 28.2 29.8 31.4	22.0 24.0 26.0 27.3 29.2 30.8 32.4	636 748 920 1106 1360 1579 1936	536 599 695 700 902 981 1180	308 336 360 380 410 430 450
1x150 1x185	14.2 16.2	4.5 4.5	32.7 34.9	33.7 35.9	2254 2660	1310 1495	470 503
1x240 1x300 1x400 1x500 1x630	18.2 21.2 23.4 27.3 30.5	4.5 4.5 4.5 4.5 4.5	37.1 40.3 42.5 46.8 50.2	38.1 41.3 43.5 47.8 51.2	3246 3920 4904 6000 7321	1735 2031 2385 2852 3354	530 580 610 670 717

THREE-CORES RE4H10R-8.7/15 kV - ARE4H10R-8.7/15 kV

nominal area conductor	conductor diameter d	insulation thickness	nominal overall diameter D	maximum overall diameter	approx cable kg/	kimate weight km	minimum bending radius
mm ²	mm.	mm.	mm.	mm.	Cu	AI	mm.
3x 16	4.7	4.5	39.9	41.0	1971	1673	574
3x 25	5.9	4.5	43.8	44.8	2347	1882	627
3x 35	7.0	4.5	50.0	51.0	3596	2946	710
3x 50	8.2	4.5	52.8	53.8	4254	3310	750
3x 70	9.9	4.5	56.7	57.7	5170	3848	810
3x 95	11.5	4.5	60.3	61.3	6195	4400	860
3x120	12.9	4.5	63.5	64.5	7212	4945	903
3x150	14.2	4.5	66.5	67.5	8338	5504	940
3x185	16.2	4.5	71.2	72.2	9812	6317	1010
3x240	18.2	4.5	75.6	76.6	11813	7279	1070

ARMOURED THREE-CORES RE4H10ZR-8.7/15 kV - ARE4H10ZR-8.7/15 kV

nominal area conductor	conductor diameter d	insulation thickness	nominal overall diameter	maximum overall diameter	approx cable kg/	kimate weight /km	minimum bending radius
mm²	mm.	mm.	mm.	mm.	Cu	AI	mm.
3x 16	4.7	4.5	45.5	46.6	3543	3245	652
3x 25	5.9	4.5	49.8	50.9	4220	3775	713
3x 35	7.0	4.5	55.1	56.1	4975	4324	780
3x 50	8.2	4.5	57.9	58.9	5723	4779	820
3x 70	9.9	4.5	61.8	62.8	6739	5416	880
3x 95	11.5	4.5	65.4	66.4	7906	6112	930
3x120	12.9	4.5	68.8	69.8	9000	6733	980
3x150	14.2	4.5	71.8	72.8	10224	7390	1020
3x185	16.2	4.5	76.3	77.3	11770	8275	1082
3x240	18.2	4.5	81.0	82.0	13957	9423	1140

nominal area conductor				ground	laying				air la	avina		
		R _t =100 °	°C cm/W		R _t =200 °C cm/W				······································			
mm ²	Cu 😱	• Al	Cu	AI	Cu 😱	• Al	Cu	AI	Cu 😱	• Al	Cu	AI
1x 16 1x 25 1x 35 1x 50	140 165 194 228	112 132 150 178	133 156 183 217	105 122 143 168	109 128 151 177	89 105 124 138	103 121 142 168	80 94 109 129	152 179 211 250	116 136 158 193	150 176 186 190	98 124 147 183
1x 70 1x 95 1x120 1x150 1x185	277 333 381 427 484	219 261 299 332 378	263 315 363 406 461	207 246 282 314 357	213 254 293 326 368	169 199 227 253 286	201 239 277 308 349	156 186 213 236 268	311 382 439 505 560	243 298 320 382 420	294 333 383 462 550	231 280 327 363 418
1x240 1x300 1x400 1x500 1x630	556 630 709 803 894	437 495 574 638 735	530 602 679 775 873	415 469 545 619 715	420 473 527 601 670	330 373 431 478 556	399 449 508 582 654	311 351 407 453 531	694 796 905 1030 1500	543 615 702 740 950	621 711 832 975 1375	494 574 689 876 917

CONTINUOUS CURRENT RATINGS (ampere)

CONTINUOUS CURRENT RATINGS (ampere)

nominal area conductor		ground	air laving				
	R _t =100 °	°C cm/W	R _t =200 °	°C cm/W	air idying		
mm ²	Cu	AI	Cu	AI	Cu	AI	
3x 16	133	106	97	76	136	109	
3x 25	156	122	119	93	160	128	
3x 35	184	145	145	112	190	150	
3x 50	219	170	177	134	224	173	
3x 70	259	205	208	160	273	215	
3x 95	319	243	251	189	338	253	
3x120	350	274	277	213	373	300	
3x150	400	318	318	250	439	340	
3x185	451	350	353	271	498	385	
3x240	535	413	416	327	585	459	

CONTINUOUS CURRENT RATINGS (ampere)

nominal area conductor		ground	air laving				
	R _t =100 °	R _t =100 °C cm/W		°C cm/W			
mm ²	Cu	AI	Cu	AI	Cu	AI	
3x 16	129	103	94	74	132	106	
3x 25	151	118	115	90	155	124	
3x 35	180	144	147	124	181	146	
3x 50	215	169	174	138	223	170	
3x 70	253	200	203	162	270	215	
3x 95	310	240	247	191	329	253	
3x120	349	273	279	221	362	293	
3x150	400	305	322	243	415	329	
3x185	430	349	341	281	500	360	
3x240	510	402	407	321	585	453	

SINGLE-CORE RE4H1R-12/20 kV - ARE4H1R-12/20 kV

nominal area conductor	conductor diameter d	insulation thickness	nominal overall diameter D	maximum overall diameter	approx cable kg/	ximate weight ⁄km	minimum bending radius
mm ²	mm.	mm.	mm.	mm.	Cu	AI	mm.
1x 25	6.0	5.5	26.0	27.0	892	737	380
1x 35	7.0	5.5	27.1	28.1	1021	804	390
1x 50	8.2	5.5	28.5	29.5	1216	902	410
1x 70	9.9	5.5	30.2	31.2	1464	1024	440
1x 95	11.5	5.5	32.0	33.0	1769	1171	460
1x120	12.9	5.5	33.4	34.4	2052	1297	480
1x150	14.2	5.5	34.9	35.9	2391	1447	500
1x185	16.2	5.5	37.1	38.1	2805	1640	530
1x240	18.2	5.5	39.1	40.1	3381	1870	560
1x300	21.2	5.5	42.3	43.3	4065	2176	600
1x400	23.4	5.5	44.7	45.7	5077	2553	640
1x500	27.3	5.5	48.8	49.8	6166	3017	700
1x630	30.5	5.5	52.4	53.4	7526	3559	750

THREE-CORES RE4H10R-12/20 kV - ARE4H10R-12/20 kV

nominal area conductor mm²	conductor diameter d mm.	insulation thickness mm.	nominal overall diameter D mm.	maximum overall diameter mm.	approx cable kg/ Cu	ximate weight /km Al	minimum bending radius mm.
3x 25 3x 35 3x 50 3x 70 3x 95	6.0 7.0 8.2 9.9 11.5	5.5 5.5 5.5 5.5 5.5 5.5	52.4 54.5 57.4 61.2 65.0	53.4 55.5 58.4 62.2 66.0	3611 4083 4771 5714 6810	3146 3432 3826 4392 5015	750 770 810 870 920
3x120 3x150 3x185 3x240	12.9 14.2 16.2 18.2	5.5 5.5 5.5 5.5 5.5	68.2 71.2 75.6 80.5	69.2 72.2 76.6 82.0	7847 9000 10481 12700	5580 6166 6986 8200	970 1010 1070 1140

ARMOURED THREE-CORES RE4H10ZR-12/20 kV - ARE4H10ZR-12/20 kV

nominal area conductor mm ²	conductor diameter d mm	insulation thickness mm	nominal overall diameter D mm	maximum overall diameter mm	approx cable kg/	kimate weight km Al	minimum bending radius mm
					ou	,	
3x 25 3x 35 3x 50 3x 70 3x 95	6.0 7.0 8.2 9.9 11.5	5.5 5.5 5.5 5.5 5.5 5.5	57.5 59.8 62.7 66.5 70.1	58.5 60.8 63.7 67.5 71.1	5045 5630 6381 7450 8614	4580 4979 5436 6128 6820	820 850 890 940 990
3x120 3x150 3x185 3x240	12.9 14.2 16.2 18.2	5.5 5.5 5.5 5.5	73.5 76.3 80.9 85.5	74.5 77.3 81.9 86.5	9780 10962 12611 14792	7513 8128 9116 10258	1040 1080 1140 1210

nominal area conductor	ground laying							air laving				
	R _t =100 °C cm/W			R _t =200 °C cm/W								
mm²	Cu 😱	• Al	Cu	AI	Cu 🔒	• Al	Cu	AI	Cu 🔒	• Al	Cu 🖕	AI
1x 25 1x 35 1x 50 1x 70 1x 95 1x120 1x150 1x185 1x240 1x300	160 191 227 333 380 426 482 557 620	125 151 175 218 258 297 330 375 429 491	154 185 220 271 319 364 414 466 540 604	125 146 169 213 248 284 319 364 416 478	126 148 176 214 255 290 324 366 421 466	101 115 135 169 196 225 251 285 323 370	118 141 169 209 247 280 316 356 410 455	96 111 131 173 190 218 243 275 312 360	173 210 250 312 383 437 500 572 675 773	130 160 193 243 301 342 393 458 520 615	154 189 224 277 340 386 441 506 600 589	119 147 169 215 265 300 343 404 462 539
1x400 1x500 1x630	715 785 890	565 639 738	695 770 874	551 623 724	538 585 664	427 473 452	523 576 655	416 466 545	890 1020 1182	703 825 948	798 914 1078	620 727 859

CONTINUOUS CURRENT RATINGS (ampere)

CONTINUOUS CURRENT RATINGS (ampere)

nominal area conductor		ground	air laving			
	R _t =100 °	C cm/W	°C cm/W		ying	
mm²	Cu	AI	Cu	AI	Cu	AI
3x 25 3x 35 3x 50 3x 70 3x 95	153 185 216 263 319	124 144 172 200 243	130 145 172 207 254	104 117 138 157 190	155 190 222 272 330	125 150 175 209 253
3x120 3x150 3x185 3x240	354 405 445 529	274 310 349 413	279 323 351 414	216 244 275 325	375 430 500 590	300 339 383 454

CONTINUOUS CURRENT RATINGS (ampere)

nominal area conductor		ground	air laving			
	R _t =100 °C cm/W R _t =200 °C cm/W					, , , , , , , , , , , , , , , , , , ,
mm ²	Cu	AI	Cu	AI	Cu	AI
3x 25 3x 35 3x 50 3x 70 3x 95	159 180 220 263 320	124 143 171 202 249	128 142 174 207 254	103 114 136 159 196	160 184 222 270 334	125 150 174 215 260
3x120 3x150 3x185 3x240	359 410 452 525	280 310 342 405	284 326 355 413	222 242 268 317	362 439 502 583	300 319 373 465

SINGLE-CORE RE4H1R-18/30 kV - ARE4H1R-18/30 kV

nominal area conductor	conductor diameter d	insulation thickness	nominal overall diameter D	maximum overall diameter	approx cable kg/	kimate weight km	minimum bending radius
mm²	mm.	mm.	mm.	mm.	Cu	AI	mm.
1x 35 1x 50 1x 70 1x 95 1x120 1x150 1x185 1x240	7.0 8.2 9.9 11.5 12.9 14.2 16.2 18.2	8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	32.3 33.7 35.6 37.4 38.8 40.1 42.3 44.5	33.3 34.7 36.6 38.4 39.8 41.1 43.3 45.5	1315 1512 1792 2114 2406 2742 3176 3788	1098 1198 1350 1516 1650 1798 2010 2277	466 486 512 538 558 576 606 640
1x300 1x400 1x500 1x630	21.2 23.4 27.3 30.5	8.0 8.0 8.0 8.0	47.7 49.8 54.2 55.4	48.7 50.8 55.2 57.4	4502 5534 6662 7820	2613 3015 3513 3953	680 710 710 775

THREE-CORES RE4H10R-18/30 kV - ARE4H10R-18/30 kV

nominal area conductor mm ²	conductor diameter d mm.	insulation thickness mm.	nominal overall diameter D mm.	maximum overall diameter mm.	approx cable kg/ Cu	kimate weight km Al	minimum bending radius mm.
3x 35	7.0	8.0	61.4	62.8	4138	3482	873
3x 50	8.2	8.0	68.9	69.9	6273	5328	980
3x 70	9.9	8.0	72.8	73.8	7319	5997	1030
3x 95	11.5	8.0	76.5	77.5	8469	6674	1080
3x120	12.9	8.0	79.7	80.7	9575	7308	1130
3x150	14.2	8.0	82.7	83.7	10806	7972	1170
3x185	16.2	8.0	87.4	88.4	12420	8925	1240
3x240	18.2	8.0	91.9	92.9	14563	10030	1300

ARMOURED THREE-CORES RE4H10ZR-v - ARE4H10ZR-18/30 kV

nominal area conductor mm ²	conductor diameter d mm.	insulation thickness mm.	nominal overall diameter D mm.	maximum overall diameter mm.	approx cable kg/ Cu	kimate weight km Al	minimum bending radius mm.
3x 35	7.0	8.0	67.3	69.3	6981	6330	956
3x 50	8.2	8.0	74.2	75.2	8212	7267	1050
3x 70	9.9	8.0	78.1	79.1	9360	8038	1100
3x 95	11.5	8.0	81.8	82.8	10610	8815	1160
3x120	12.9	8.0	85.0	86.0	11812	9545	1200
3x150	14.2	8.0	88.0	89.0	13136	10302	1240
3x185	16.2	8.0	92.7	93.7	14890	11395	1310
3x240	18.2	8.0	97.2	98.2	17166	12630	1370

nominal area conductor				ground	laying				air laving				
		R _t =100 °	°C cm/W			R _t =200	°C cm/W		an aying				
mm ²	Cu 😱	AI	Cu	AI	Cu 😱	• Al	Cu	AI	Cu 🔒	• Al	Cu	Al	
1x 35 1x 50 1x 70 1x 95 1x120 1x150 1x185 1x240	186 227 278 330 374 425 487 552	145 179 213 258 291 330 379 429	180 220 269 318 363 414 473 438	140 173 208 247 281 319 361 417	146 178 216 255 287 327 375 423	114 139 166 198 221 253 285 326	142 173 210 247 279 318 365 411	112 137 160 191 214 245 276 317	203 250 310 380 430 470 573 670	158 195 243 300 341 380 443 525	182 225 278 341 386 418 513 604	140 174 119 268 304 349 394 471	
1x300 1x400 1x500 1x630	635 705 803 899	489 553 631 719	622 692 788 890	474 540 618 704	488 537 608 680	372 419 477 539	477 527 599 675	361 409 467 532	763 882 1020 1152	603 698 795 906	691 801 933 1072	539 627 715 829	

CONTINUOUS CURRENT RATINGS (ampere)

CONTINUOUS CURRENT RATINGS (ampere)

nominal area conductor		ground	air laving				
	R _t =100 °	C cm/W	R _t =200 °	°C cm/W	an laying		
mm ²	Cu	AI	Cu	AI	Cu	AI	
3x 35 3x 50 3x 70 3x 95	184 219 260 319	142 169 205 243	150 177 206 254	116 137 167 192	180 220 268 325	139 170 215 252	
3x120 3x150 3x185 3x240	369 402 450 528	285 313 355 412	297 323 359 420	228 250 284 327	380 440 495 570	299 333 382 448	

CONTINUOUS CURRENT RATINGS (ampere)

nominal area conductor		ground	air laving				
	R _t =100 °	C cm/W	R _t =200 °	°C cm/W	an aying		
mm ²	Cu	AI	Cu	AI	Cu	AI	
3x 35 3x 50 3x 70 3x 95	178 215 255 315	138 165 203 238	147 177 202 251	114 134 162 188	175 216 262 319	135 167 210 249	
3x120 3x150 3x185 3x240	350 394 450 513	282 305 355 403	277 321 357 407	227 241 282 320	365 435 485 559	290 326 377 450	

SINGLE-CORE RE4H1R-26/45 kV - ARE4H1R-26/45 kV

nominal area conductor	conductor diameter d	insulation thickness	nominal overall diameter	maximum overall diameter	approx cable kg/	kimate weight ⁄km	minimum bending radius
mm²	mm.	mm.	mm.	mm.	Cu	AI	mm.
1x 70	9.9	10	37.7	40.0	1929	1510	560
1x 95	11.5	10	39.3	41.6	2224	1659	570
1x120	12.9	10	41.1	43.4	2558	1834	590
1x150	14.2	9	40.4	43.0	2729	1831	580
1x185	16.2	9	42.4	45.0	3140	2221	600
1x240	18.2	9	44.4	47.0	3681	2237	640
1x300	21.2	9	47.8	50.3	4410	2583	680
1x400	23.4	9	50.0	52.5	5427	2950	720
1x500	27.3	9	54.3	56.8	6441	3359	790
1x630	30.5	9	58.0	60.5	7879	4006	820

THREE-CORES RE4H10R-26/45 kV - ARE4H10R-26/45 kV

nominal area conductor	conductor diameter d	insulation thickness	nominal overall diameter	maximum overall diameter	approx cable kg/	kimate weight km	minimum bending radius
mm ²	mm.	mm.	mm.	mm.	Cu	AI	mm.
3x 70	9.9	10	81.0	84.0	8615	7393	1136
3x 95	11.5	10	84.8	87.8	9711	8152	1188
3x120	12.9	10	87.8	90.8	11012	8915	1230
3x150	14.2	9	88.3	91.3	11359	8798	1278
3x185	16.2	9	90.6	93.6	12694	9596	1310

ARMOURED THREE-CORES RE4H10ZR-26/45 kV - ARE4H10ZR-26/45 kV

nominal area conductor	conductor diameter d	insulation thickness	nominal overall diameter D	maximum overall diameter	appro cable kg/	ximate weight /km	minimum bending radius
mm ²	mm.	mm.	mm.	mm.	Cu	AI	mm.
3x 70 3x 95 3x120 3x150	9.9 11.5 12.9 14.2	10 10 10 9	87.0 90.3 93.2 94.6	90.0 93.3 96.0 99.0	10660 11863 13242 15044	9425 10187 11010 12254	1220 1265 1344 1386

nominal area conductor	ground laying								air laving			
		R _t =100 °	°C cm/W			R _t =200 °	°C cm/W					
mm ²	Cu 🔹	• Al	Cu 🔓	AI	Cu 🛛	• Al	Cu 🕻	Al	Cu 🛛	• Al	Cu	• Al
1x 70 1x 95 1x120 1x150 1x185 1x240	266 320 358 408 455 530	210 253 284 320 363 420	260 310 340 397 448 520	205 248 279 312 355 414	208 250 283 310 353 408	166 199 225 245 278 320	203 244 280 306 348 404	160 192 215 241 271 314	320 386 47 505 580 680	250 304 350 401 460 537	287 349 401 453 520 615	224 275 316 360 409 485
1x300 1x400 1x500 1x630	591 678 750 905	474 540 612 802	583 670 745 895	465 530 602 780	449 507 569 648	360 402 455 524	444 505 565 642	352 398 450 517	772 886 1020 1185	668 715 829 971	704 815 942 1078	553 645 749 873

CONTINUOUS CURRENT RATINGS (ampere)

CONTINUOUS CURRENT RATINGS (ampere)

nominal area conductor		ground	laying		air laying		
	R _t =100 °	°C cm/W	R _t =200 °	°C cm/W			
mm²	Cu	AI	Cu	AI	Cu	AI	
3x 70 3x 95	247 295	194 231	199 235	159 186	261 314	205 247	
3x120 3x150 3x185	333 374 422	263 294 332	267 300 335	212 234 263	361 407 465	282 320 366	

CONTINUOUS CURRENT RATINGS (ampere)

nominal area conductor		ground	air la	avina			
	R _t =100 °	C cm/W	R _t =200 °	°C cm/W			
mm²	Cu	AI	Cu	AI	Cu	AI	
3x 70 3x 95 3x120 3x150	242 289 326 366	190 226 258 288	199 235 262 294	157 186 208 229	256 308 354 399	200 242 276 314	

_d	+	d t
\bigcirc	\bigcirc	\bigcirc

Single-core cables

nominal area		copper co	onductors			aluminium	conductors	
conductor mm ²	3.6/6 kV	6/10 kV 8.7/15 kV	12/20 kV 15/20 kV 18/30 kV	26/45 kV	3.6/6 kV	6/10 kV 8.7/15 kV	12/20 kV 15/20 kV 18/30 kV	26/45 kV
10 16 25	2.310 1.455 0.937	2.310 1.455 0.936	- - 0.936		3.780 2.392 1.512	_ 2.392 1.512	- - 1 512	
35 50 70	0.674 0.500	0.676 0.499	0.676		1.094 0.818	1.094 0.818	1.094 0.818	- - 0.566
95 120	0.345 0.249 0.198	0.345 0.248 0.197	0.345 0.248 0.197	0.345 0.248 0.197	0.566 0.409 0.323	0.566 0.409 0.323	0.566 0.409 0.323	0.300 0.409 0.323
150 185 240	0.161 0.127 0.0984	0.161 0.127 0.0983	0.161 0.127 0.0982	0.161 0.127 0.0981	0.263 0.210 0.160	0.263 0.210 0.160	0.263 0.210 0.161	0.263 0.210 0.161
300 400 500	0.0789 0.0624 0.0496	0.0787 0.0624 0.0495	0.0788 0.0623 0.0494	0.0786 0.0622 0.0491	0.130 0.102 0.0812	0.130 0.102 0.0810	0.130 0.102 0.0812	0.129 0.102 0.0805
630	0.0395	0.0394	0.0393	0.0391	0.0649	0.0646	0.0649	0.0645

8

nominal area

conductor mm²

> 10 16

> 25

35

50 70

95

120

150

185

240

300

400

500

Three-cores cables

all voltages

aluminium cond.

3.845

2.431

1.542

1.112

0.818

0.565

0.410

0.325

0.264

0.213

0.164

0.134

0.108

0.0879

copper cond.

2.346

1.479

0.937

0.675

0.499

0.344

0.250

0.198

0.163

0.130

0.100

0.0815

0.0658

0.0536

Single-core cables

nominal area conductor	all voltages				
mm ²	copper cond.	aluminium cond.			
10 16 25 35 50 70 95 120 150 185 240 300 400 500 630	$\begin{array}{c} 1.310\\ 1.455\\ 0.936\\ 0.675\\ 0.499\\ 0.345\\ 0.250\\ 0.197\\ 0.162\\ 0.130\\ 0.0995\\ 0.0805\\ 0.0644\\ 0.0521\\ 0.0429\end{array}$	3.780 2.392 1.512 1.094 0.818 0.566 0.409 0.322 0.265 0.211 0.163 0.133 0.106 0.0853 0.0704			

CAPACITY VALUES AT 50 Hz (µF/Km)

nominal area conductor mm ²	3.6/6 kV	6/10 kV	8.7/15 kV	12/20 kV	18/30 kV	26/45 kV
10 16 25 35 50 70 95 120 150 185 240 300 400 500	0.175 0.185 0.19 0.21 0.25 0.27 0.30 0.34 0.37 0.39 0.42 0.48 0.53 0.60	0.17 0.175 0.19 0.21 0.25 0.27 0.30 0.34 0.37 0.39 0.42 0.48 0.53 0.60	0.150 0.155 0.16 0.20 0.21 0.26 0.28 0.30 0.33 0.36 0.40 0.44 0.48	- 0.13 0.15 0.17 0.20 0.22 0.24 0.26 0.28 0.30 0.33 0.36 0.41	- 0.12 0.13 0.15 0.17 0.19 0.20 0.21 0.23 0.26 0.27 0.30	- - - 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28
630	0.69	0.69	0.55	0.46	0.34	0.31

PHASE REACTANCE VALUES AT 50 Hz (0hm/km)

	ngle-core ca	bles (averag	e value)			
nominal area conductor mm ²	3.6/6 kV	6/10 kV	8.7/15 kV	12/20 kV	18/30 kV	26/45 kV
10 16 25 35 50 70 95 120 150 185 240 300 400 500 630	$\begin{array}{c} 0.13\\ 0.15\\ 0.18\\ 0.18\\ 0.17\\ 0.17\\ 0.16\\ 0.16\\ 0.16\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.14\\ 0.14\\ 0.14\\ \end{array}$	$\begin{array}{c} 0.15\\ 0.16\\ 0.19\\ 0.19\\ 0.18\\ 0.17\\ 0.17\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.15\\$	0.16 0.18 0.20 0.19 0.19 0.18 0.17 0.17 0.17 0.17 0.16 0.16 0.16 0.15 0.15 0.15	- 0.21 0.20 0.19 0.19 0.18 0.18 0.17 0.17 0.17 0.16 0.16 0.16 0.15 0.15	- 0.21 0.20 0.20 0.19 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.16 0.16 0.16	- - - 0.21 0.20 0.19 0.19 0.19 0.19 0.18 0.18 0.17 0.17 0.17 0.17 0.16

Single-core cables

nominal area conductor mm ²	3.6/6 kV	6/10 kV	8.7/15 kV	12/20 kV	18/30 kV	26/45 kV
10 16 25 35 50 70 95 120 150 185 240 300 400 500	0.15 0.14 0.13 0.12 0.11 0.11 0.10 0.098 0.094 0.091 0.089 0.087 0.083	0.16 0.15 0.14 0.13 0.12 0.12 0.11 0.11 0.10 0.097 0.095 0.091 0.089	$\begin{array}{c} 0.16\\ 0.15\\ 0.14\\ 0.13\\ 0.12\\ 0.12\\ 0.12\\ 0.11\\ 0.11\\ 0.11\\ 0.10\\ 0.098\\ 0.096\\ 0.092 \end{array}$	- 0.15 0.14 0.13 0.13 0.12 0.12 0.12 0.11 0.11 0.11 0.10 0.098 0.096	- 0.16 0.15 0.14 0.13 0.13 0.12 0.12 0.12 0.11 0.11 0.11 0.10	- - - 0.15 0.14 0.14 0.13 0.12 0.12 0.12 0.12 0.11 0.11
630	0.082	0.087	0.090	0.093	0.098	0.10

Three-cores cables

nominal area conductor mm ²	3.6/6 kV	6/10 kV	8.7/15 kV	12/20 kV	18/30 kV	26/45 kV
10	0.13	0.14	0.5	_	_	_
16	0.12	0.13	0.14	_	—	_
25	0.11	0.12	0.13	0.14	_	_
35	0.10	0.11	0.12	0.13	0.14	_
50	0.096	0.11	0.12	0.12	0.13	_
70	0.092	0.10	0.11	0.11	0.13	0.14
95	0.088	0.097	0.10	0.10	0.12	0.13
120	0.086	0.094	0.10	0.10	0.12	0.13
150	0.084	0.091	0.097	0.10	0.11	0.12
185	0.082	0.087	0.094	0.097	0.11	0.11
240	0.079	0.085	0.090	0.094	0.10	_
300	0.077	0.084	0.088	0.092	0.10	_
400	0.075	0.082	0.086	_	_	_
500	0.074	0.078	_	_	-	_
	1	I		1	1	1

GROUP RATING FACTORS

AMBIENT TEMPERATURE DIFFERENT FROM STANDARD CONDITIONS

Ambient temperature °C	15	20	25	30	35	40	45	50	55	60	65
Ground laying cables	1.04	1.00	0.96	0.92	0.88	0.84	0.80	_	_	-	_
Air Cables*	Ι	1.09	1.09	1.00	0.95	0.90	0.85	0.79	0.74	0.67	0.60

* Not exposed to direct sunlight

THREE-CORES CABLES (OR SINGLE-CORE CABLES ENCLOSED IN TREFOIL) GROUNDED LAYING

Number of cables or trefoil-set (horizontally)		2	3	4	6
	7 cm	0.84	0.74	0.67	0.60
Space between cables or trefoil-sets	25 cm	0.86	0.78	0.74	0.69

THREE-CORES CABLES (OR SINGLE-CORE CABLES ENCLOSED IN TREFOIL) GROUNDED PIPE LAYING

1.5 d	Number of cables (horizontally)	1	2	3
d to the test of test		0.82	0.69	0.61

3

0.88

6

0.85

2

0.90

THREE-CORES CABLES AIR LAYING

	Number of cables (horizontally)	1
		0.95
0.5 ú		

^d d w w w −-0,3 m	Number of cables (hor	izontally)	1	2	3	6
		1	1.00	0.98	0.96	0.93
	Number of layers (vertically)	2	1.00	0.95	0.93	0.90
↓ ↓ 0.5 d		3	1.00	0.94	0.90	0.87

Number of cables (vertically)	1	2	3	6
	1.00	0.93	0.90	0.87

	Number of cables (horizontally)		1	2	3	6
~0,3 m		1	0.95	0.84	0.80	0.75
	(vertically)	2	0.95	0.80	0.76	0.71
1		3	0.95	0.78	0.74	0.70

Number of cables (vertically)	1	2	3	6
	0.95	0.78	0.73	0.68

24 TRATOS

()()()()

GROUP RATING FACTORS

SINGLE-CORE CABLES TREFOIL AIR LAYING

Number of trefoil sets (horizontally)	1	2	3	4
	0.95	0.90	0.88	0.87

Number of trefoil sets (horizontally)		1	2	3
Number of layers (vertically)	1	1.00	0.98	0.96
	2	1.00	0.95	0.93
	3	1.00	0.94	0.90

SINGLE-CORE CABLES AIR LAYING HORIZONTALLY AND VERTICALLY SPACED OUT

	Number of trefoil sets (horizontally)	1	2	2	4	
		0.92	0.8	89	0.97	
0.5 d						
	Number of trefoil sets (horizontal	ly)	1		2	
• • • • • • • • • • • • • • • • • • •		1	1.0	00	0.97	
	Number of layers (vertically)	2	0.9	97	0.94	
0.5 d		3	0.96		0.93	
l ⊙ <u>⊤</u> d						_
l • d	Number of trefoil sets (vertically)	1			2	
		0.94			0.91	
1/3 d						_
d T	Number of trefoil sets (vertically)	1			2	
d d		0.89			0.86	
\sim						

PHASE LAY-OUT FOR SINGLE-CORE CABLES CONNECTED IN PARALLEL TO PROVIDE CORRECT CURRENT SPLITTING

Trefoil laying cables

Number of trefoil sets in the same layer*	2	3	4
	T T	T T T	T T T T
	RS SR	RS SR RS	RS SR RS SR

Horizontally or vertically spaced-out cables

Number of trefoil sets in the same layer*	2			4		
	RST	TSR	RST	TSR RST	TSR	

*When cables are installed on several layers their lay-out must be repeted for each layer.

SHORT CIRCUIT RATING

The maximum short circuit current allowed for short period of time (a few seconds) for copper or aluminium conductors can be calculated by the following formula:

- where: **Icc** = short circuit current (A)
 - K = factor of the conducting material which obtained from the difference between starting and final temperature of short circuit; K copper = 143K aluminium = 92
 - S = area conductor (mm²)
 - t = duration of short circuit (sec.)

The following table reports the values in KA of the current calculated for the starting temperature of 90°C and for the duration of 1 second.

Area conductor mm ²	Copper	Aluminium
10	1.4	0.9
16	2.3	1.5
25	3.6	2.3
35	5.0	3.2
50	7.1	4.6
70	10	6.4
95	14	8.7
120	17	11
150	21	14
185	26	17
240	34	22
300	43	28
400	57	37
500	72	46
630	90	58

K factor (final temperature = 250° C)

Material	Starting temperature				
Conductor	50	70	90		
copper aluminium	165 107	154 100	143 92		

To calculate the current allowed in the screen you can use the same formula indicated above for the conductor with the factor $K = 180^{\circ}C$.

VOLTAGE DROP

The voltage drop can be calculated by the following formula for connections in alternating current:

 $\Delta V = K \cdot L \cdot I (R \cdot \cos \theta + X \cdot \sin \theta)$

- where: ΔV = voltage drop (V)
 - = 1,73 for three-phase system Κ
 - Κ = 2 for single-phase system
 - = connection length (km)
 - Ĺ L = current rating (A)
 - R = conductor resistance at using temperature (Ohm/km)
 - х = phase reactance (Ohm/km)
 - **cosø** = power factor

For direct current connection cosø =1

COMPARISON BETWEEN RATED VOLTAGES AND INSULATION RATE

Insulation rate	Nominal voltage kV Uo/U	Maximum voltage kV Um
8	1.8/3	3.6
11	3.6/6	7.2
17	6/10	12
24	8.7/15	17.5
32	12/20	24
47	18/30	36
67	26/45	52

- Uo = relates to the nominal tension between a conductor and earth
- = relates to the nominal tension between the conductors of the cable
- Um = greatest tension which the cable is suitable

FINAL TESTS

The final tests to which the Medium Voltage cables are subjected are in compliance with IEC 60502-2 standard.

Routine tests

- Electrical resisistance of conductor
- · Partial discharge on cables having cores with conductors screens and insulation screens
- Voltage test

Sample tests

- Conductor examination
- Chek of dimensions
- Voltage test for cable of rated voltage above 3,6/6 (7.2) kV
- Hot set test for EPR, HEPR and XLPE insulations and elastomeric sheaths

Electrical type tests

- Partial discharge test
- · Bending test
- Tanδ measurement
- Heating cycle test
- Impulse test
- Voltage test

Non-electrical type tests

- Thickness of insulation
- Thickness of non-metallic sheaths
- · Mechanical properties of insulation before and after ageing
- · Mechanical properties of non-metallic sheaths before and after ageing
- Additional ageing test of completed cables
- Loss of mass test on PVC sheaths of type ST2
- · Pressure test at high temperature on insulation and non-metallic sheaths
- Test on PVC insulation and sheaths at low temperatures
- · Test for resistance of PVC insulation and sheaths to cracking (heat shock test)
- Ozone resistance test for EPR anf HEPR insulations
- Hot set test for EPR, HEPR and XLPE insulation and elastomeric sheaths
- Oil immersion test for elastomeric sheaths
- Water absorption test on insulation
- Flame retardance test
- Carbon black content of black PE oversheath
- Shrinkage test for XLPE insulation
- Thermal stability test for PVC insulation
- Determination of hardness of HEPR insulation
- Determination of elastic modulus of HEPR insulation
- Shrincage test for PE oversheaths
- Strippability test for insulation scren
- Water penetration test

Electrical tests after installation

Tests after installation are made, if required, when the installation of the cable and its accessories has been completed. They are for new installations only.

• d.c. voltage equal to 4 Uo shall be applied for 15 min.

As an alternative, and by agreement between the contractor and purchaser, an a.c. voltage tes at power frequency, in accordance with indicated below:

• test for 5 min. with the phase-to-phase voltage of the system applied between the conductor and the metallic screen;

test for 24 hours with the normal operating voltage of the system.

Insulation	Electrical tests after
rated voltage	installation in c.c. for 15'
Uo kV	kV
3.6	14.4
6.0	24
8.7	34.8
12	48
18	72
26	104

STORAGE AND HANDLING

We summarize some rules to be observed during the installation of MV cables for fixed layng. In order to provide easy operations we suggest do not work at cable temperature below than 5°C. Cables bending radius are indicated in Range and Dimensions tables and they must be to value carefully. For unarmoured cables and in order to pull cable inside pipes or trench it is advisable to apply the pool force on the conductors being careful do not exceed 5 kg/mm2 of total area for copper cables and 3 kg/mm2 for aluminium cables.

Example:

copper cable	1 x 240 mm2:	max pull force kg	_ 1200
aluminium cable	1 x 240 mm2:	max pull force kg	720
copper cable	3 x 240 mm2:	max pull force kg	3600
aluminium cable	3 x 240 mm2:	max pull force kg	2160

For steel cable armour the strain rope will be applied to the armour while the pool force by steel braid is advisable only for limited efforts.

If there are curves along the lay route must be placed a sufficients conveyers, for example at the entrance of pipes, suitable to keep the cable in the right direction line in order to avoid to exceed the maximum pulling load allowed.

Concerning overhead cables any strain will be charged on the supporting rope for installaion operations and during working time.

Besides data reported in this booklet is always important to consider the effects of thermal dissipation. All installations in parallel trefoil must be realized with maximum care in order to aim the most balanced charge distribution on the cables connected to the same phase. Therefore please consider the following infomation:

- all cables must have the same metal conductors
- all cables must have the same lenght and section
- the bundle cables must be made-up following R, S and T phases system as indicated on page 25
- the cables must be properly spaced
- right and balanced connections to the cables terminals

DRUMS CAPACITY (meters)

	Cable diameter	DRUM TYPE											
\bigwedge	mm	BL60	BL70	BL80	BL90	BL100	BL120	BL140	BL160	BL180	BL200	BL220	BL250
	, 11	446	769	994	130	2041	3441	5248	5991	8320	11896	13901	17758
	14	275	475	614	3	1260	2124	3240	3698	5137	7344	8582	10963
	17	187	322	416	805	855	1441	2197	2508	3484	4981	5820	7435
	20	135 🚿	233	301	546	617	1041	1588	1812	2517	3599	4205	5372
	23	102	1 76	227	394	467	787	1200	1370	1903	2721	3180	4062
¥—.	26	80	138	178	298	365	616	939	1072	1489	2129	2488	3179
1\.	29		111	143	233	294	495	755	862	1197	1712	2000	2555
1.	34		80	104	188	202	365	549	627	871	1245	1455	1859
· .	40			75	136	154	260	397	453	629	900	1051	1343
	46				99		197		343	476	680	795	1015
	52					/ 91	154	235	268	372	532	622	795
/.	58						124	189	215	299	428	500	639
· · ·	64						102	165	177	246	351	411	525
	-70							130	148	205	294	343	439
-	76							/ 110	125	174	249	291	372
-	821		/					94	108	150	214	250	320
-	88		\bigvee		/	_			94	130	186	217	277
	94	_	Λ		\rightarrow					114	163	190	243
	100	/			\sim			-		101	144	168	215
	105			~			· · · · · · · · · · · · · · · · · · ·	\searrow		91	131	153	195
					/	-		*			119	139	178

HOW TO SELECT THE DRUM

Example:

1 - kind cable ARE4H1R-12/20 kV 1x240 mm2 see page 16 overall cable diameter mm 39.1 a round figure mm 40 minimum bending radius mm 560 cable quantity mt 500

2 - determination of drum barrel diameter = mm 560 x 2 = 1120 mm consequently qualified drums are BL180/200/220/250.

3 - outcome = following above practice the more convenient drum able to contain mt 500 is BL 180

DRUMS DIMENSION

- A Flange diameter including circumference batten B Flange diameter without circumference batten C Inner barrel diameter D Axis hole

E - Inner width F - External width

DRUM TYPE	A mm	B mm	C mm	D mm	E mm	F mm	Drum weight Kg	Batten weight Kg	Global volume m ³
BL60	690	630	315	80	315	435	15	11	0.17
BL70	770	710	355	80	400	515	20	16	0.25
BL80	860	800	400	80	450	575	25	21	0.34
BL90	960	900	450	80	450	575	36	23	0.42
BL100	1.060	1.000	500	80	560	685	44	30	0.62
BL120	1.310	1.250	630	80	630	760	77	42	1.10
BL140	1.460	1.400	710	80	750	920	113	56	1.60
BL160	1.660	1.600	900	80	900	1.070	182	75	2.40
BL180	1.860	1.800	1.120	80	1.120	1.320	319	106	3.70
BL200	2.060	2.000	1.250	125	1.120	1.320	387	121	4.50
BL220	2.300	2.240	1.400	125	1.120	1.320	478	135	5.60
BL250	2.510	2.450	1.500	125	1.120	1.320	560	148	6.50

NOTE

The data belong to the standard wooden drums daily in force in all Tratos Cavi facilities. Neverthless for uncommon cable lengths there are available very large wooden and metallic drums. In this cases transport resctric-tions have to be considered like special law-loading trailers and permits from traffic authorities in accordance with local regulations.

GLOSSARY

- A.C. Alternating current in which the charge-flow periodically reveres
- Accesories Components necessary to cables network connection
- Aluminium conductor An aluminium wire or group of wires
- Aluminium screen Usually a longitudinal smooth or corrugated aluminium tape overlapped and theimosealed
- AWG America Wire Gauge
- Bending radius Minimum bending radius a cable can be bent without permanent demage
- BS British Standard (UK)
- Cable tray A channel system used to hold and support power cable
- Cable pipe A pipe used to contain power cable
- **Capacitance -** The value of the capacity of a dielectric material between two conductors
- CEI Comitato Elettrotecnico Italiano
- Compacted conductor Ansure regular conductor diameter avoiding stress to insulation layer
- Conductor losses Power losses due to the resistance of conductors
- **Conductor screen -** An extrusion layer direct on the cable conductor of a semi-conductin material to provide regular distribution of electrical stress
- Copper conductor A copper wire or group of wires
- Copper screen Overlapping spiral-wound copper tapes or copper wires to coil up
- **Dielectric -** Generally a non metallic material with high resistivity
- **Dielectric costant -** The relation between the charge by a condenser with dielectric material and vacuum
- D.C. Direct current
- Dielectric losses Power losses due to the conductance of dielectric materials
- Dielectric strenght Maximum voltage gradient that a material withstand
- Embossing code Raised cable code on the outersheath
- Electrical resistance The resistance of the materials to the flow of current (Ohm/km)
- Electrical metal screen A metal shield against external fields, need to equalize electric fields
- Electromagnetic compatibility The capability of different electrical system to coexist without interferences
- Electrical gradient The sheare of dieletrical strenght express in kV/mm
- Filler Mass of material to fill layng cores interstices in order to provide an appro ximate round shape cable, through extrusion or by different elements assembled together cores
- Frequency The number of cycles (hertz) of an alternating current in one second

- HEPR High ethylene propylene rubber
- IEC International Electrotechnical Committee
- Insulation Dielectric layer
- **Insulation screen -** An extrusion layer direct on the cable insulation of a semi-conducting material which uniform radial stress distribution across insulation
- Jacket The outer protective covering of a cable
- Joints Accessory suitable to joint two cables
- Laying depht Installation depht trench
- Lug Accessory suitable to connect a cable conductor to the network
- Metallic armour Additional mechanical cable protection usually covered by a plastic layer
- M1 LS0H low smoke and zero halogen
- MT Medium tension
- MV Medium voltage
- NF Norme Française (F)
- Phase lay-out System to provide a corretc current splitting
- PE Polyetylene
- Plain conductor Mean a conductor of only one metal
- Print code Ink print cable code in the outersheath
- PVC Polyvinyl chloride
- **Reactance -** The opposition to the flow of alternating current by inductance or capacitance
- **Resistivity -** A conductor electric resistance
- Semiconductor A material with lower electrical resistance than a dielectric material
- Sheath The outer protective covering of a cable
- Short circuit current Breakdown due temperature rise
- Single core One phase cable
- System Network
- Terminations Accessory suitable to connect a cable to the network
- Trefoil Lay-out of three sigle cable
- Three cores Three phases cables
- **Uo kV -** Nominal tension between any insulated conductor to earth
- U kV Nominal tension between two insulated conductor of the cable
- Um kV Maximum tensione which the cable is suitable
- UNE Unificación de Normas Españolas (E)
- **VDE -** Verband der Elektrotechnik (D)
- Voltage drop Rduced voltage in the circuit
- XLPE Cross-linked polyethylene

Tratos Cavi S.p.A. reserves the right to modify at any time technical dimensional and weight characteristics shown in this catalogue to improve the features of its products. However these will still be in accordance to the mentioned standards. There is no responsibility of the manufacturer for damages to persons and property in case of improper use and/or neglecting the recommendations for using cables and norms contained in this catalogue.

Kama May 2009

ALMA S.r.l. Via Stadio, 2 52036 Pieve S. Stefano - Italy Tel. +39 0575 7941 Fax +39 0575 798026

TRATOS CAVI S.p.a. Via Stadio, 2 52036 Pieve S. Stefano - Italy Tel. +39 0575 7941 Fax +39 0575 798026 commerciale@tratos.it

> TRATOS CAVI S.p.a. filiale Catania XIII Str. Strad. V.Lancia Loc. Piano D'Arci 95121 Catania - Italy Tel. +39 095 7482101 Fax +39 095 291059

TRATOS H.V. S.p.a. Via Pian di Guido, 45 52036 Pieve S. Stefano - Italy Tel. +39 0575 799429 Fax +39 0575 796907

TRATOS Ltd UK - Park Road Holmewood Industrial Park Holmewood - Chesterfield DERBYSHIRE S42 5UW Tel. +44 01246 858000 Fax +44 01246 858001

NORTH WEST CABLES Ltd School lane, Knowsley Merseyside L34 9HD Tel. +44 01515 483888 fax +44 0151 549 1169

TRATOS CAVI Iberica S.L. Spain Paseo de los Parques 6, bloque 6, 1D 28109 Alcobendas (Madrid) Tel./ Fax +34 91 6255887

MEDIUM VOLTAGE CABLES

CROSS-LINKED POLYETHYLENE INSULATION

Engineering Data for Copper and Aluminium Conductors