The greatest increase in demand for energy is envisaged to come from developing countries where, with rapid urbanisation, large-scale electricity generation will be required. With environmental requirements for zero or low CO2 emission sources and the need to invest in a sustainable energy mix, new energy sources must be developed. Fusion will be available as a future energy option by the middle of this century, and should be able to acquire a significant role in providing a sustainable, secure and safe solution to tackle European and global energy needs.
Plasma can be described as an ‘electrically-charged gas’ in which the negatively charged electrons in atoms are completely separated from the positively charged atomic nuclei (or ions). Although plasma is rarely found on earth, it is estimated that more than 99% of the universe exists as plasma.
In order to replicate this process on earth, gases need to be heated to extremely high temperatures of about 150 million degrees ºC whereby atoms become completely ionised. The fusion reaction that is easiest to accomplish is the reaction between two hydrogen isotopes: deuterium, extracted from water and tritium, produced during the fusion reaction through contact with lithium. When deuterium and tritium nuclei fuse, they form a helium nucleus, a neutron and a lot of energy.